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1. INTRODUCTION AND BACKGROUND

One of the more important problems of high energy laser technology is
the determination oi intensity loss at target caused by atmospheric effects.
Aerosol and particulate scattering, molecular absorption and turbulence
all contribute significantly t< jyropagation losses. The molecular ab-
sorption at low or moderate altitudes is of particular importance to the

Army mission since it leads to severe thermal blooming losses in addi-
tion to the linear absorption loss.

The deuterium fluoride (DF) laser operates in a wavelength region at
which the atmosphere is generally less absorbing than at most other infrared
wavelengths. Molecular absorption processes are of a complicated nature,
however, and many of them are very wavelength dependent. Conseguently,
atmospheric absorption at the precise DF laser frequencies cannot be pre-
dicted with desired confidence at this time. The present investigation was
undertaken to supply quantitative predictions of atmospheric molecular ab-
sorption at sea level at the more important DF frequencies to define the
important questions that exist, and to suggest a measurements approach to
solve ‘hese questions. In addition, the absorption.- mechanisms responsible

for atmospheric molecular absorption are discussed, and a modeling procedure
more sophisticated than used to date is suggested.

9 Preceding page blank
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2. NATURE OF ABSORPTION AT DF WAVELENGTHS !

General Considerations

Atmospheric molecular absorption at a particular wavelength is a com-
posit of separate contributions from many different molecular species and
their isotopes, weighted by their abundance in the atmosphere. In general,
; each molecuiar absorber's contribution will arise from many lines, some

e e A ks e

centered at or near the laser frequiency, and some centered tens or hundreds
of cm'1 from the laser frequency. Each individual line is zxpected to have

the same functional frequency dependence (shape), but each line invariably

hae a unique set of shape parameters, Thus, one might be tempted to
conclude that a precise calculation of absorption coefficients for open air
laser propagation may not be feasible. However, molecular physics and spec-
troscopy are'very well developed subjects, and consequently it is possible to
perform such calculations at some wavelengths with a high degree of accuracy,
using simple molecular absorption models, if an adequate data base is avail-
able. The region of DF laser emission (3.6 - 4.0, m) appears to be one region
where the absorption processes are well amenable to such modeling techniques
(see Section 4) although the data base in this region is not sufficient at this
time. The remainder of this section will discuss the general approach to

modeling the molecular absorption process, and to defining the relevant
& theoretical concepts. , i
3

b
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Molecular Absorption Modeling Procedure

Two characteristic types of molecular absorption exist at DF wavelengths:
continuum absorption and lire absorption. Continuum absorption is caused either
by higher order pressure effects on molecules which do not normally absorb, or
by absorption in the distant wings of lines located far from the laser line center.

e et ——— v T

f Continuum absorption by definition varies slowly with wavelength in the gen-
g eral vicinity of laser frequencies. The line (or line core) akscrption occurs

~lva p
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very near one or more absorption centers. Consequently, it may vary rapidly

with wavelength in the vicinity of a laser frequency. In the following dis-

cussion, transmittance will be written in terms of an absorption coefficient,
in units (length)"1 and absorbing path length, as follows,

r = exp [-kL].

Current practice is to write the total absorption coefficient as the sum of a
line and a continuum contribution:

k(v) = khne(lv') + kc(v)

Both kline and k c are the sum of absorption coefficients from all molecular

\ constituents which contribute at the particular wavelength:
t

L
K ine) = ?kline(")

[ VORI VP —

' ’ The distinction between line and continuum absorption is natural since dif-
$ ferent measurements techniques are usually required for each, and their physical
mechanisms are not necessarily the same, Tfhe altitude, temperature, pressure
and concentration dependence of line and continuum absorption may be quite dif-

ferent, but each obeys principles characteristic of itself, regardless of the
particular molecules involved.

e e At B s W

It is therefore natural to separate the two
effects both in analytical and in measurements studies.

o . ey o T

The line absorption coefficient is expressed more generally as the ‘
product of the absorption strength and a shape factor f(y-yO)I

kline(") = 8f(v-vg)

The proper shape f(y-yo) for a given absorption line is determined by the
physical mechanism which causes the spectial spread of the absox s:ion

i o S

about the center frequency vor If the spread is caused by collisions (the
so-called pressure broadening) the shape factor has the Lorentz form:

e W o r e e o

11

z,
‘ e e




fo-voh,, =
Y0'lor ﬂ[(v-uo;2+;[]

The factor ¢ in the denominator is a normalization factor inserted to main-
tain S as the strength, or integrated absorption coefficient, of the transition.
If the absorption spread is caused by The Doppler effect, f(u-vo) is as follows:

log v-vg\ 2 :
_ 1 e 0 :
fb-vgy) = 7_—D - exp [-(———7[) ) loge2] z

Often the combination Doppler-Lorentz (or Voigt) profile is used to represent
a line shape for which Doppler and collision broadening is competitive. This

Sl i, A

E

should be done cautiously since a third effect, collisional narrowing, may
significantly reduce the Doppler width, and thus the Voigt profile. Since the
narrowing effects can reduce the Doppler width to insignificance, often it is

best to include both effects, or to include neither. Although each case must be
treated individually, between 1 and 15 microns, and at altitudes below 10 km,
the Doppler width is reduced by the narrowing effect. However, the impact under
these conditions is minimal since the Doppler width is usually small correction
on the dominant collision broadening.

Significant collision broadening which is not necessarily described by
the Lorentz shape may occur. These vary slowly wit.. frequency, and they
usually occur far from line center. I is these contributions which are
modeled as the constant or moncotonically varying contributions k c* Molecular
absorbers at a given laser wavelength are few. In the DF region for exampie,
H20, HDO, Nzo and CH 4 are known to be significant line contributors, and at
a given laser wavelength, only two or three of these dominate. With regard to
kc, only H20 and N2 are known to be significant at DF wavelengths.

The distinction drawn here between line and continuum absorption is not
precise, since the exact distance from line center at which the ideal shapes
may deviate significantly is not well known, and it may differ for each ab-
sorber -collision partner combination. We prefer, in general, to refer to

line absorption as consisting of a line "core' contribution and a ''near wing" ‘
12 ﬁ




contribution which describes the region where significant deviations from
the ideal shape begin to occur. In this context, continuum caused by infra-
red active molecules is essentially a "far wing' absorption: ' |

K@) =K W)+ k) + kg

b e G A A AT

For sea level conditions, i.e., P ~ 1 atm. pressure, each line absorption
coefficient ax DF wavelengths will be assumed to have the Lorentz shape:

k. =k ()= ——
l ~; line ~ "lorV "l(“‘”?*;q

The superscript and the individual line designations have been deleted for *
clarity of notation. The three parameters of importance are S, y and Vo 1
the strength, width, and line center position. At absorption line center,
vV =y the peak value of k(v) is as follows,

kg) = k* =2 |

It can be seen that k{y=y) = %kp Consequently, y has the interpretation of half
of the width of k(v) at half its peak value. Near line center, k varies as -78-,
but well beyond v = vot s k ~ Sy. Prediction of lagser absorption coefficients
k("L) = kL is sensitive to possible error in the location of vy, OF of the ab-

sorption center vor For example, for the Lorentz shape,

klor("L) ) 4 I(VL"’O) +Y I

).

Thus, core absorption at vy, is very sensitive to S, y, and §p = (yL - Vo
It can be seen that the form of k{y) is such that such errors in S or o,
coupled with errors in sy of order ,, or 2y can give incorrect predictions

which cannot be identified unambiguously by a single wavelength monochromatic ?
measurement alone. l ‘f

13
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The near wing of the line is defined as the location on k(y) at which
|v-vgl >> ¥ Thus, for a Lorentz line,

kK o

™ w-yg)
It is precisely this region where deviations from the Lorentz shape are
expected. Consequently, more precise modeling may require a non-Lorentz
expression for knw‘ For example, the following form, which depends on a

single parameter, has been used [1, 2] for the frequency range beyond Lorentz
cutoff frequency y ¢

= v> Vc
LU "I[(v-‘,o)ﬂ + 7"]

where [" is a normalization constant. In the above, p > 2 implies sub-Lorentz
absorption, and ¢ < 2 implies super-Lorentz behavior. For p < Ve the

Lorentz form is assumed. Other expressions have also been used to des-
cribe non-Lorentz behavior not too far from line center {3, 4).

In the DF region, the near wings of absorption lines appear to contribute

much less than line core absorption. Therefore, the less sophisticated ap-

proach which ignores shape considerations is adopted here. This is essenti-
ally the approach taken in the recent AFCRL line-by-line computations (5,6, 7).
Each laser region must be considered individually, however, since the near
wings and other effects such as dimer absorption may be important. This
appears to be the case at CO laser wavelengths, and at (.?0z wavelengths,
respectively. At these wavelengths, the more sophisticated modeling of the
core, near wing, far wing and continuum contributions is suggested.

Nature of the S, ¥ and v, Parameters

A4

The line center parameter vo depends on the intramolecular forces of
the molecule. They are therefore not variable for normal conditions of

14
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pressure and temperature. The S and y parameters do vary in complex
ways for each transition of each molecule, and for different pressure condi-

tions. Therefore, a brief description of the variability of S and y will be
given.

The basic quantity upoa which the strength S depends is the Einstein

coefficient for induced absorption B (fei).
S « B(f-i)

B(f-1) is a function of only the molecular species and the initial and final states.
It is independent of the temperaiwure, pressure, or concentration. Thus B(f«i)
is the most fundamental quantity normally used to obtain line strengths. The
temperature and concentration dependence of the line strength S come in
through well understood processes. Thus once one has measured the strength
at single temperature and concentration (and thus the Einstein coefficient B)
the strength at all temperatures and concentrations can generally be determined
with great confidence and accuracy. If ’I‘l and 'I‘2 are two arbitrary tempera-
tures, then S at T, may be obtained from S at T, as follows [5):

S(T.) = S(T.) Q,(T,)Q(T,) [ 1.439 E(T,-T,) ]
= §(T exp

2 17Q,T,R,(T,y) T,

where the Q are vibrational and rotational partition functions and E is the

energy of the initial level.

For the general case of a polyatomic molecule,
L ’ 1 ] 1 ] * 2
B(aj." ,J*-a.V.J)-I <aj.V yJ |ﬁ'|a.V.J> l

where primed and unprimed quantum numbers are final and initial values,
respectively. In the above, o denotes all other quantum numbers required
to specify a given molecular state. The quantity <f |,‘,’| i> is the usual nota-
tion for the electric dipo’e matrix element of the transition. As the notation
indicates, there is a unique matrix element for each set of quantum numbers,
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i. e., for each individual absorption line. Usually the rotational quantum
number dependence is not strong, and it is separated as an "'F factor," as i
shown below;

J \ ' 2 z ] ] !
|<afs Vs 3" |@lar ¥, I > | © = | <v' || V> | F(V.V.J.J.a,.a,') i

However, there are also many cases where F may be large and may vary . ;
rapidly with quantum number. This is particularly true in some bands of H,0, !
Nao and others for which accidental resonant perturbations occur. It is in the :

modeling of <f| ,‘,’ |i> from limited data or approximate theory that incorrect ;
values of S are expected to occur. ‘

The Lorentz width depends in a complicated way on the collision processes
between the absorbing molecule and its collision partners (8,9]. It may
vary rapidly with rotational state J, and to a lesser extent, with the v
state of the colliding molecules. Quantitatively, depends on the number
of collisions the molecule experiences per unit time. Therefore, y is the
sum of the contributions of the various collision partners. If Py is the
! partial pressure of the ith molecular constituent [10],

YT vgPg t f"ipi

% where 8 refers to self, and i refers to foreign collision partners. Collectively,
L Y = vgPg * 7Py

where { refers to foreign broadening. In extreme cases, vg €an be as much
as ten times 7 Often, it can be only a few times greater. Thus, if mixtures
are such that Py ~ lOps or lOOps, the effects of self broadening in determining
¥ are slight. Therefore, enrichments to about one part in 100 can usually

be used to determine the cesired air broadened y coefficients, and often

, even less dilute miniures may be used with accuracy. For qualitative judg-

; ments, the concept of broadening efficiencies or self to foreign broadening

16




b4
ratio B = ;3 is often usea to determine ¥ for gas mixtures or to predict
{

''safe'’ gas mixture ratios, However, one should be careful in using B

since it is a function of the particular transition involved. Even so, a #ingle

value of B is often used as a guide to the ratio of widths found throughout a

band. While this practice is relatively crude and inaccurate it is often dic-

tated by a lack of knowledge of both the se'f and foreign broadened width for
all the lines of a band.

Y
e e i i i e
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5. CONTINUUM ABSORPTION IN THE DF REGION

The nzo and N2 continua arise from quite different mechanisms,

and consequently they have quite different wavelength and pressure de-
pendencies.

The nao continuum is thoug:.t to be the accumulation of far wing line
absorption originating from lines in the strong vibration-rotation bands of
H, J located on both the long and short wavelength sides of 3.5 ,m. Since
the distant wings vary slowly with wavelength, the Hz() continuum is not ex-
pected to have structurz which varies rapidly with wavelength. Also, since
individual lines have a self and foreign broadened componer:, azo continuum
is expected to have contributions from both, in general. In the distant wings
of a Lorentz line, the absorption varies as follows

K ngSoY

tw =vq)

vro
where

y = pB)B + ?piyi

In the above, P, and p, are self and foreign gas partial pressures, respec-
tively, 7 is the total hulf width at half height, and n, is the number density
per unit volume of azo or othier ubsorber.

The HzO contiruum absorption coefficient is expressed as the sum of
contribrtions from coliisions with itself and foreign partners. Following
Burch (11, 12],

0 o]

kc(Hzo) = ns(Csps-rCf p:)

where C: and C? are empirical absorption coefficient parameters. In the DF
region, Burch has deduced a value of Cg for 296°K, based on measurements

18
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|

of pure Hzg) vapor maintained at high temperatures, He also suggested a v
value of C‘ /C: ~ 0.12, in lieu of measurements of either C: or C? at the |
lower temperature. It is significant that the nzo continuum has a mixed
denendence nn pertin! o os5ure of 'ﬁao. Since n, is proportional to P,

for ideal gases, *he self broudening varies quadratically and the foreign

broadening varies linearly with Py

3
!
H

In his measurements, Burch [12] investigated the HzO self broadened
continuum at several temperatures. He found the data foliowed the empirical
form

Cz = ¢ exp (m/T)

where our values of m and c are given in Table 1. His data are reproduced
for convenience in Figure 1a. It is noteworthy that this data shows au appreci-

able temperature dependence. Also, for low T, the small number density of
nzo causes difficulty in performing accurate measurements. The curve for
206° is extrapolated from the higher temperature data. The dashed portion
is extrapolated from only one set of data. The self broadened azo continuum
dependence on T, relative humidity, and wavenumber in the DF region is |
1 shown in Figure 1b for a 2 km path. Calculations of 4,0 continuum for the |
f midlatitude summer and midlatitude winter models are shown in Figures 1c¢
and 1d.

It is of interest that the dependence of k c O Pg is quite different near
10.6 ym than it is at ~ 3.8 ym. This is because measured values indicate
that a ratio of C?/C: = 0.005 occurs for the 10.6 ,m region [13). For the
10.68 4, m applications, then, the C: absorption coefficient parameter is much
more important than at the shorter wavelength, and for even slightly humid
conditions, k c(uzo) varies essentially as p:.

The N2 continuum arises from the electric dipole forbidden fundamental

N2 vibration-rotation band centered at 2400 cm'l. It absorbs via a transition




Table 1.
Evaluated Parameters for C° as a Function of T at

2400 and 2600 cm

v = 2400 cm'l

m c

cmz

(°K'l) molec. afm.

-1.8

for Nz and HzO.

i = 2600 em”

1

m <

cm

©xY) iholec, afm,

H,O0

341 1.415 x 10~46

1305 6.5¢ x 10°38

0 1.8 x 10

1067 7.1x10°

20
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moment induced by collisions with itself or foreign molecules. Since the N2
absorbs only in the presence of a collision partner, the ''rotational line widths"
are expected to be very broad -- broader in fact than the approximately 4 cm"l
spacings between the transitions, Consequently, the N2 self broadened con-

tinuum, like the H20, is expected to show no spectral structure. However, i

3
it takes the shape of the R branch envelope of the forbidden vibration-rotation ,
band.

The N2 continuum absorption coefficient is also written as the sum of
contributions from collisions with other N2 mnolecules and with foreign species:

(o] (o]
k,(Np) = (CgPg + Cypyng

where p s’ the partial pressure of N2’ is contained in ng. Burch's mea-
surements show that NZ'OZ collisions induce absorption almost as effec- f |
tively as do N, -N, collisions. Therefore, if O, is taken as the only " i‘

foreign collision partner, C: - C?. To this approximation,

0
kc(NZ) = Cghg (ps + pf)

O S

Therefore, the N2 continuum varies approximately as the product of the total

pressure and the N2 partial pressure. The N2 absorption coefficient, to this
approximation, is shown in Figures 1c and 1d.

K it o s o

It is of interest to compare the
pressure dependencies of the HZO and N2 continuum absorption coefficients in

the DF region. The atmospleric N2 continuum varies as the square of the par-
tial pressure of NZ’ if the mixing ratio of N? and 02 is constant,

b Mok $450 SR 1 T - S 0 8 5

k (N,)~ C%n 1408 |
c' 2 s"sPs P i

The H20 continuum, on the other hand, varies more nearly linearly with HZO
partial pressure:

25 *'
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k_(H,0)~ Con 148338
¢ 2 t g Py ' P
where C: has been replaced by 8.33 C°, and where Nge Py We have
written kc(Hzo) in this form to emphasize the importance :{ C? relative
o
to Cs’
The temperature dependence of the N2 continuum is fairly weak, This

has been measured in several laboratories. The results of Burch are shown
in Figure le.

Thec discussion in this and in the previous section is intended to place
in perspective the several quite different absorption mechanisms. Since the
continuum absorption mechanisms are not well understood, we feel that addi-
tional clarification of the contributions in the 3.8 ym region is of value. It
is important to remember that the HZO continuum as it occurs in atmospheric
absorption is the sum of contributions from H20 abscrbers which collide with
both air molecules and other Hzo molecules. Since air is predominantly N,,
the continuum is often considered the sum of H20 - N2 (foreign) and H20 - HzO
(self) absorption coefficients. As pointed out quantitatively above, the self
component varies as the square of p g’ and the foreign component varies
linearly with the product of p spf' Consequently, the (complete) Hzo con-
tinuum obeys neither a linear nor square dependence on the pressure p g If
the self coefficient per molecule (C:) is sufficiently large tc surpass or domi-
nate the foreign coefficient, when appropriately weighted by the self and
foreign partial pressures, the dependence of the complete HZO continuum on
Pg approaches quadratic. This is the case at 10.6 um, where the linear con-
tribution is small even for very dry conditions. At 3.8 ,m, the magnitude of
the continuum caused by HZO - N2 collisions is sufficiently large, relative to
that caused by HZO 'HZO collisions, that when weighted properly by P the
linear term dominates. The Cg contribution is not completely negligible,
however, and consequently the dependence on p s is only approximately

linear. Consequently, we prefer to express the absorption coefficient as

26
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the sum of linear and square terms. Plots of self broadened and complete
Hzo continuum at several partial pressures clearly illustrate this mixed
pressure dependence (see Figures 1c and 1d).

In addition to its pressure dependence, the N2 (induced) continuum is
different than the H20 continuum in a significant way. It necessarily occurs
at the wavenumber region where the v = 0 @ 1 vibration-rotation band of N2
would occur if it were allowed through electric dipole absorption, the mech-
anism by which molecules normally absorb or emit infrared radiation. The
H20 continuum necessarily occurs far from the center of electric dipole
allowed bands, since it is the sum of many distant individual line wing ab-
sorptions caused by the normal electric dipole process.

In closing this section dealing with the absorption mechanisms of the
continua, we feel it appropriate to comment on the use of the general con-
cept of "broadening efficiencies' or self to foreign absorption coefficients

such as C:/C? (for the continua) and B (for the Lorentz line half width).
o

The ratio —% can be of value in performing specific calculations or

Cs

estimates of magnitudes, but its use in quantitative discussions or the de-
velopment of formalisms is not necessary, and it may well lead to confusion.
We prefer to use the more general form introduced earlier,

_ o 0
kc = Ng (Csps * Cf pf)

rather than to express foreign contribution as a function of the self contribu-
tion. If the self contribution is factored out to quantify the foreign contribu-
tion, their independence may be masked, and one may incorrectly infer a
square dependence on pressure (since n g™ ps). This view is completely
justified since C: and C? are defined as independent empirical coefficients,
and they a1 e measured independently of each other, in general.

Another case in point is the parameter B, which is essentially a ratio of
self to foreign broadened Lorentz half width y [14]. The quantity B should not

28
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be confused with the ratio C:/C? which is a modeling parameter which
quantifies the magnitude of self and foreign contributions to the continuum
absorption coefficient. In the case of nzo at 3.8 ym, for example, the
value C /C ~ 0.12 is determined empirically from extrapolated data. It
is used because far wing calculations obtained by summing specific shapes
do not agree with observations,given the measurements accurately quoted
by Burch. If the collision mechaniams for nzo nzo and H O-N colli-
sions both producy a Lorentz line shape, one may expect B » C° /

is constant, line-by-line. This is easily seen as follows Ly addlng the
Lorentz line profiles of all contributing lines:

s"ri
k(y) =Z w7

v

#[wvg) + )

Substituting as follows,

i i
Sny p S n P
1 o0 8”’8%s s"'f f
kW) =22 | =11 T *
P lw-vg ) +(yg Ps+yfpf) vy ) (73 Ps+yfpf)

In the far wings, |y-uo‘| >> 71, and k{y) » kc(v):
i i i i
o"s7sPs . SoRs 1Py

1
kc(”) N _\ 2

w-vq) (v-voi)
This expression is of the form
_ o 0
kc(v) =ng (Csps+ Cf pf)

where the coefficients C° have the interpretation:
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The ratio C:/C? then may be written ‘
i1 o
>3 So7s |
i (V'VO )
T
— 597t

~T13
i (V‘vo)

""00 ' COO
L77]

To the extent that, line-by-line, g and Yf have a constant ratio, the sums
above cancel,

~

i
8=

T r
v

» {

Sl
"

Analysis of the case where H20- N2 and nzo- Hzo collisions give rise to

different shapes is more compiicated, but one expects that the ratio C:/C? #r,
in general.
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4. MOLECULAR LINE ABSORPTION COEFFICIENTS

In addition to the continuum absorption, atmospheric line absorption
caused by Nzo, HDO, nzo and CH" occurs in the DF region. Absorption
coefficient calculations have been performed for each individual line of each
absorbing molecule which contributes to DF laser absorption. In all, 27 DF
laser lines have been investigated. The results are presented in Tables 2
through 28, and in Figures 2 through 28. In addition to displaying the contri-
bution of each line, the total line contribution is given, and the complete ab-

sorption coefficient is determined by adding the continua to tho total line con-
tribution.

Computations were performed by summing individual Lorentz absorption
coefficients, line by line. All contributors whose line centers are within
20 cm"l of the laser frequency under investigation were included in the compu-
tation. All line parameter values used in the present calculations were derived
from the AFCRL tabulation, using the appropriate temperature corrections.
Particular note should be made of the HDO and uzo line widths. For mod-
erately humid conditions, self broadened half width contributions should Le

added to the air broadened width values listed in the AFCRL compilation.
Hzo - nzo broadening is about five times as great as Hzo-air broadening,

for example [4], and for ~ 14 torr partial pressure of nzo, one would expect
~10% contribution from the H,0-H,0 collisions. Accordingly, this con-
tribution has been included in the parameters used in the present calculations,
for the few Hzo lines that occur. The 7g values were adapted from the cal-
culations of Benedict and Kaplan [15). The HDO contributors will not encounter
significant HDO collision partners. They will encounter a significant number
of collisions with the '"foreign" nzo molecules., The air broadened widths of
HDO used in the compilation are not based on measurement, and the HDO -
H,0 widths have never been investigated to our knowledge. The lack of infor-
mation on the HDO width precludes inclusion of the HDO - H20 correction,
and accordingly all HDO widths were taken from the AFCRL compilation.
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Figure 2, Contributors to the Molecular Absorption of the P3(12)

|
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DF Line (Midlatitude Summer, Sea Level).
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e i

e Amd i b B A s

i
1
|
]

ke s

R

e e e Rz e e



€EL°o
L9°t
%0°0
iz°o
20°0
w0°o
10°0
5t°0

0°0
SE°0

L0

is°e
L9°9%
sZ°t
9¢°9
8n°0
8s°0
920
96°Ct
c°0
L0°0t

L SINIT
4

4817 4a (Z1)Zd 3HI 40 NOILANOSEY 3YIN

S0-d6nh°n
H0-38€ENH°S
S0-2€96°1L
SO-3£0¢t °L
90-3€19°S
90-3£92°9
90-39€86°2
®0-3€1S°1L

0°0
0 - 39L1L°L

4300
id80say

SLO®
SLO°
8L0°
160°
690°
LLo’
LLo’
SLO”

LEO°
L80°

H1QIA
d1VH

1Z-3LL"s
1Z-30l°s
£€Z-a08°8
£EZ-361°9
EZ-d6€ ¢
£2-3Zs°¢
£Z-361°8
LZ-a6n°n

8C-3€E°S
LZ-agg L

H1ORA Y1S

(134371 vas

LAC
7 .¥4
LA-AE
[ 9.¥4
CA-TA+IAZ
LAZ
LA=AE
LAZ

¥
LA

TYNOILVIEIA

NOIIVOIAIIN3AI D1d405S081D3dS

9¢td
LEd
9Zd
8d
3064
6¢d
LzZd
8td

tEL 2 n
Z € n

TUIOILViON

‘43RNNS 3ANLILIVIQIN)

e . ——— e rmrw e

S€6°8ZS2
LS8°LZST
LLLeeese
$96°L 252
o8L°Lese
9sL LTS
S8L°92S¢
tLLc9ese

Ll 256°L2ZSC

t

JdTON JOIB3HdSONIV 01 SHOINE ININOD

681°L262

0aud

‘L d78VY1

g
LA
9N
£ 27 |
LB
L3y |
N
LN

Za
Ld

‘ON
NI

42

e e g st L.

Mmoo




B

e e R ] R T T

P, (12
1071 212

Absorption Coefficient
(km™1)

N6 D2
N
N3, 4 /\ /\
[ 1 [] ’\{_ % [ ﬁL + 1

LB LB BB J
25217.0 25217.5 2528.0
-1
Frequency (cm )

Figure 7. Contributors to the Molecular Absorption of the P2(12)
DF Line (Midlatitude Summer Sea Level),

43

et e # el ST o

4t

i < am e i e ae e



L A R A L it A L Ea i 2 it JES

AT AN ey e

LR TR

o

wicl

b 4

[P P ————

INTIT 4O (8YEd IHL 40 NOTLdYNSOY ¥y 10123710

e TS . . L S R N

86°€E %0-3%16°6 650°
0°0 0°0 sscC*
12°2 $0-30716°Ss 280°
0°o0 0°C €80°
c°o 0°c 9L10°

21°0 SC-348%°% 060°
2L°0 ¥0-326L°T €60°
16°0 Y0-39L2°7 480°
£0°€”8 [0-3190°2 180°
%1 °0 »0-3¢%8°T 920°
%1°0 sC-38%6°¢f 970°
67°1 ¥0-3%02°¢ 180°

91°¢ $0-3¢98°L 690°

SINIT 3309 H101M
2 1<yCs 9v 37v4

P Y C

€2-318°L
t2-3¢4°

0¢-381°2
£2-3%6°8
Z2-306°%
£2-3%8 ¢
f2-361°1L
£Z~396°¢
Cc-3€T1°2
2¢-301°%
22-311°y
0<-390°2

6¢-302°¢

HIONINLS

- e - ~ h ALy s o mrte ey ke o o o B - . . BTy | m

m

1

i

M
YA2Z 94 C2%°S%6Z 7w
YAZ 9d 0R9°G4CZ Tk

TAZ 8ld 612°1%52 c1r

1AZ 9Ty 090 °L%5Z 56\
ZA-2A+1AZ 1274 166°9467 @K
A2 6d S0S° "2 =LA
TA-A€ 9d 99¢ , ° 9N

1A ST 2SETOKGZ  ueM _
A2 61d 092°99¢2 4
ZA-ZA+TAZ IES %51°9%62 N
ZA-ZA4TAZ ZEEc 6€6°6962 TN
TA2 C7d €€2°6%c? 11
1A P Z2 31 L 2 + f66°9%35C 1c

TUNCILwya] ~

I Al ) BUE RS

(13A37 v3S “y3WhNS 30NL

WNOT 1V §)

IIVINIW)

W SIY3IHASOWLY CL Sy~ 1nsixiney 2 Jevy

21d0IS0AN LIS

0ﬁ7
C3idd NI |




. PR TR

N AR ST AR S E R 1

—
o
1

LA

Absorption Coefficient

[
o
lw

10

v e T me AR WA GRS

)
[ -]

km™Y)

N1

-4

2546. 5
Frequency (cm")

10

N8

N9

25417.0

Figure 8. Contributors to the Molecular Absorption of the P3(8)

DF Line (Midlatitude Summer, Sea Level).

45

* |

i
1
{
;
3
i
1
H
|
i
i
1
;
;
.
3
i
.
|
: :
! 1
: i
) |
1 1
: i
F)
|
i
3
1
3
1
1
i
i
i
i

i' ] M-a‘ﬁ-u..i« .



8

* 0 0 o 0
O™"OLUMNO OOOGCO

8'-
—-—momae coco0o0™

(-l ) ™ N
-

En°0Z

Z6°0
0°0
15°0

™oL
)

%€ °0
ot°o
c°0
0°0

el
io°s
0°0
st°t
€9°t
L 1 B
0L
LT°o
StL°¢t
0°0
£L°L

san 11
3

S0-300L°t
S0-32820°7
0°0
0°0

20-ATLN L
%0-3Z8L°8

c°0
%0-36L¢ L
#0-3606 °t
S0-30€E%°E
€0-309L L
S0~-3TSLT
20-312Z°¢

0°0
v0-3aLLL L

4302
438058Y

sse°
s50°
§s0°
SS0°

060°
680°
Lo’
8L0°
8L0°
Lo’
88o0°
8L0°
L80°

1L0°
¥90°

B1GI1A
1R

€2-302°S
€ET-3A9%°n
€Z-4dL6°T
€Z-dse°t

0Z-3t8°1
0Z-356°1
€T-30L°S
IZ-asL°9
¢Z-dLL e
€T-2LL"°9
0T-350°7
tT-aT9°L
0Z-3£1L°C

LT-asL i
SZ-d4Zn "L

21983418

(12531 Vs

NAZ
L ] XA
L] Y4
L1 Y4

1A2

LAZ

(¥ ¥4
TA-TA*LAZ
CA-TA+IAZ

LAZ

¥ ¥4
ZA-TA+LAZ

LAZ

ZAZ
iA

JYROILYEGIA

Sd
sd
Sd
sd

64
oLd
Lz

astae
sté
9Z3
ii1d
a9zd
ZLd

€ 6 Lt T 8
.o—wao

TYNOILV1IO0N

ROILVYOIdILNIAI J1Id0JS0¥LI3dS

*33ER0S 300IIIVIAIN)
2611 4a (11)Z48 28I 30 ROI3I3W0SEY BVIND3ION DINIHISONIVY Ol SHOLIQE IBINOD

08Z° nSSe
085° €SS
00S° €SST
08E°€5ST

965°6552
§69° 4552
9SH° 1SS
8LZ" 0SS
'4 ] 3 1374
ELB°ESSE
6nL°ESST
L82° €SS
9€8°CSST

0€9°€ESSe
oLL°€SSe

D3sa

‘6 d19Y41

ne
eN
N
(9

6
an

sk

9
LY |
shi
14 |
4 |
Y ]

r4Y]
ia

"OR
N1l

46

RTPUTIR ST

NP NS W T




P,(11)
lo-l 3

=
o

Absorption Coefficient
-1
(km )

[
o
4
'z

fo
' 1
D3 . " < |
\ ’A' g N7 |
10.4 _ 4“‘ -; _1' } : {g
2553.5 2554.0 2554.5 1
Frequency (em™ 1)
Figure 9.

47

Contributors to the Molecular Absorption of the Pz(ll)
DF Line (Midlatitude Summer, Sea Level).
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Figure 11. Contributors to the Molecular Absorption of the P,(10)

DF Line (Midlatitude Summer, Sea Level).
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Figure 19. Contributors to the Molecular Absorption of the P,(9)
DF Line (Midlatitude Summer, Sea Level).
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Figure 20. Contributors to the Molecular Absorption of the P2(5)

DF Line (Midlatitude Summer, Sea Level).
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Figure 21. Contributors to the Molecular Absorption of the Pl(8)

DF Line (Midlatitude Summer, Sea Level).
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Figure 22. Contributors to the Molecular Absorption of the P2(4)
DF Line (Midlatitude Summer, Sea Level).
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Figure 23. Contributors to the Molecular Absorption of the P
DF Line (Midlatitude Summer, Sea Level).
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Figure 24. Contributors to the Molecular Absorption of the P2(3)
DF Line (Midlatitude Summer, Sea Level).
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Figure 26. Contributors to the Molecular Absorption of the P, (5)
DF Line (Midlatitude Summer, Sea Level).
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DF Line (Midlatitude Summer, Sea Level).
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The input parameters and line computation procedures were purposely
chosen for direct comparison with calculations performed at other labora-
tories. The most significant difference between the curves presented here
and the calculations of McClatchey, et. al. [6,7], is in the HyO continuum.
Long first pointed out that the original AFCRL calculations should be cor-
rected for the continuum, and he included the contribution in his tables [16].
We include it in our curv.s since it is important at the temperature and
humidity chosen for our calculations. The good agreement between our cal-
culations and Long's can best be seen by comparing the total of the line and
continuum coatributions in our curves with Tables III and VI of Long. In
an erratum to Reference 7, the authors point out that extinction caused by
scattering is competitive with or even greater than molecular absorption
except for very humid conditions. We have purposely restricted the present
investigation to molecular absorption. This is a natural division since molec-
ular extinction and energy transfer mechanisms differ in principle from those
of aerosols. Very importantly for the high energy laser (HEL) application
considered here, molecular absorption is the starting point for thermal
blooming, a phenomenon which contributes non-linearly to beam degradation.
The absorption portion of the extinction caused by aserosols can be expected
to contrib\ute to the blooming by a somewhat different mechanism and thus
should be treated independent of either molecular absorption or scattering.
Scattering contributes to energy loss linearly; consequently, it cannot be
treated equivalent to absorption, for HEL applications. We also include the
continuum absorption along with the line absorption to maintain internal con-
sistency. Our curves show that at the given conditions, for eighteen out of
twenty-seven DF lines, the HZO continuum contributes more than any single
line contributor, and it is the second most important contributor for all other

lines. In most cases, no contributor is dominant, but in all cases, the HZO
continuum is significant. (At higher altitudes or dryer conditions, of course,
the unitormly mixed gases become much more important. )
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Presentation cf the Results

All calculations are presented on logarithmic plots of k(y) versus wave-
number at each of 27 DF laser wavelengths. Each line is identified by &
letter and a numeral. The code is as follows:

b o

Letter Specie

HDO
CH 4
N,0

Co,

et i it il o

n=zZzgoam

In addition, an asterisk next to an N indicates an isotope of N20. Individual |

specie lines are identified in order of increasing value of line center position,

|
by numerals 1, 2, 3, ..., etc. For example, M3 identifies the methane con- !

tributor which has the third lowest wavenumber location.

The numerai desig-
nations begin from 1 for each DF laser line.

The laser lire location used by
McClatchey is designated by a vertical line near the center of the figure.

Recent calculations by Yin [16] indicate some significant discrepancies with
the values used by McClatchey. For compieteness, both laser positions are
indicated, with the values due to Yin designated by the shorter line.

Considerable information is contained in the descriptive table which

accompanies each plot of k(y). Each column of the tables will now be de-
scribed in turn.

Column 1, Line No. Line identity as described above.

Column 2, FREQ. Wavenumber position of the absorbing line, as taken
from the AFCRL compilation.

Column 3, SPECTROSCOPIC IDENTIFICATION. Rotation and vibration
transition identification of the absorbing line.
tion is as follows:

s e e ot e o 2

For each molecule, the descrip- |

HDO, HZO ROTATIONAL VIBRATIONAL

u . u . u
UK, K, J“K’;Kﬁ

V mode designation
87
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N,O

J and K are the usual water vapor rotational quantum numbers.

u and ¢ refer to upper and lower levels involved in the trunsition,
The vibrational mode designations refer to the fundamental, over-
tone, combination or "hot" band responsible for the vibrational
mode change. Since there are three fundamental vibrations,

Vi Vg Vg typical designations are:

V Mode Designation (v‘l‘, Ve vV vg, vg)

2’ '3
\'A 1 0 0.0 0 O
2va o 2 0.0 0 O
V2 o 1 0.0 O O
3v2-v2 0 3 0.0 1 0 (hot)
ROTATIONAL VIBRATIOISAL
P, Q, orR V mode designation

The standard notation P, Q, R is used for rotational transitions
AJd = -1, 0, 1, respectively. As is the case for HDO and HZO’
three vibrational frequencies exist for N20. The contributing
modes for N20 are as follows:

V Mode Designation V%, V3, Vi vE, vt vt

P 2 1’ "2 73
V1+2V2 1 2 00 0 O
V1+3V2-V2 1 3 00 1 O
V1+4v2-2V2 1 4 0.0 2 0
2V1 2 0 0,0 o0 O
2V1+2V2-2V2 2 2 0.0 2 o0
3vi-vi 3 0 0.1 0 O
V2+V3 o1 1.0 0 O
2V1+V2-V2 2 1 0.0 1 O
88
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ROTATIONAL VIBRATIONAL
P, Q orR V Mode Designation

Because of methane's spherical symmetry, higher order splitting
may occur for each P, Q, or R line. Values listed in the AFCRL
compilation are included here, but the precise identification of each
component within a AJ transition is not in~ ded. Splittings and
other parameters listed in the compliation were derived from older
work, and are highly suspect since the theory is complicated and the
data base is inadequate. It i felt that a precise distinction between

the lines for a given AJ should be made when more reliable param-
eters become available.

Vibrational mode designations are also presented in the simpli-
fied form, for the reasons mentioned above, and because the present
application does not require use of the + quantum numbers. The

relationship of the present mode description to that of the AFCRL
tabulation is as follows,

V Mode Designation  Vy, Vy, Vg, Vg« V], Vi, Vg, V¢

2 "3 4

2v4 0 0 0 20 0 O O
V2+V4 01 0 10 O O O
V3 0 01 0.0 O O O

Column 4, STRENGTH. Strength values are presented in the basic unit

cm/molecule. All tabulated values are for the conditions of the midlatitude
summer model, which is defined as follows

P=1atm
T = 294°K

Water vapor pressure = 14.26 torr (Humidity = 77%)

R
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Strength values of each molecule are weighted by natural isotopic abun-
dances, but not by mixing ratios. A HDO line strength, for example, is
diminished by the accepted atmospheric abundance factor of 0, 0003. An
estimate of laboratory absorption would require an adjustment of the listed

S value to account for the amount of enhancement over natural abundance.
The natural mixing ratios used here are listed as follows [ 5]

Constituent ppm by volume
C.‘O2 330
Nzo 0. 28
CH 4 1.6

Column 6, ABSORPT COEF. Calculated absorption coefficient at the DF
wavelength are tabulated in units km™1,

Column 7, % LINES. Percent contribution of each line to the total line
absorption coefficient.

Column 8, % TOTAL. Percent contribution of each line to the total (line +
continuum) absorption coefficient.

A summary of the absorption coefficients is presented in Table 28a. Only
the N2 continuum contribution is not listed explicitly. This value can be ob-

tained by subtracting line total and H20 continuum from the total given in the
last column,

In concluding the discussion of the present calculations, attention is drawn
to the fact that the absorption coefficient profile of each line contributor has
been displayed, rather than just the total absorptance or absorption coefficient,
The additional effort required for this was deemed necessary to designate the
precise contributor and absorption phenomena which dominate the absorption.
With this display also, the overall impact of errors in assumed S, 7, év, wing
or continuum can be more read.ly assessed. For example, certain DF lines
can easily be seen to be insensitive to possible errors in S, v, or 8v, whereas
others are very sensitive to these parameters.
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Table 28a. Atmospheric Molecular Absorption of DF Laser Lines
Due to Various Species (Midlatitude Summer, Sea Level)

Absorption Coefficient x 10° Q&m'l)

H,0

Line Freq 120 HDO N0 CH, Totl  Cont. Totall
Py(12) 2445.20 .0221 .0042 1.668 -- 4.076° 28.78 9872
Py(11) 247134 5.719 .9183 3.025 - 9.692% 25.45 78.83
Py(10) 2495.61 4.358 0443 .2727 L0133 4.588 22.71 5315
P,(13) 2500.32 .1142 .0898 .2069 .0028 .4936 22.34  46.60
Py(9) 252181 .0436 .1740 .4480 .0027 .6684 20,00 3542
P,(1) 2521.47 .0086 .1841 9574 .0187 1.167 19.59 33.70
Py(8) 254637 .0425 1.081 22.78 1.021 24.90 18.20 5138
P,(11) 2553.97 .0089 .4645 9.663 .0776 10.21 1777  35.06
P(1) 257051 .0656 4.391 $3.72 .0317 38.21 17.06  60.42
P,(10) 2580.16 .0085 2.523 23.20 .0025 25.73 16.80 46.79
P(6) 2504.23 .4684 6.420 2.029 0177 8.935 16.63 28.83
P,(9) 2605.87 .0105 21.53 .3572 .0726 21.97 16.90 4L.52
P(5) 2617.41 .0481 2.443 .0108 .1030 2.605 17.46 22.20
P,(8) 263100 3.233 8.749 --  .8683 12.85 18,20 32.72
P,(7) 265597 .0100 42.14 -- 2577 44.73 19.73  64.46
P(10) 2665.20 .0348 13.95 --  2.201 16.19 20.36 36.55
P,(6) 268028 .2990 48.44 --  .4865 49.23 2146 70.69
P,(9) 2601409 6.131 1152 .-  .3021 17.96 22.32 40.28
P,(5) 2703.98 .0285 4.843 --  .0018 4.874 23.36 26.23
P/(8) 2717.53 .1175 82.60 ~--  .0021 82.81 24,54 107.35
P,(4) 212738 8.154 28.91 .-  .111T 3ILT8  25.44 63.22
P(7) 2143.028 .0539 26.08 .0039 .2489 26.39 26.95 53.34
P,(3) 2750.05 .4094 12.28 .0310 .5156 13.24 27.66  40.90
P(6) 2167.014 .0205 51.99 .0932 3.042 55.35 20.55 84.90
P(5) 2192.437 1.855 32.19 .7993 .6274 3550 $2.35 67.85
P,4) 2816.362 1.992 56.57 .9431 3.842 63.3¢ 34.93 98.27
P(3) 2839.779 20.97 26.89 --  .7161 STL57T 3T.32 94.89

1. Includes Ny continuum.

2. Includes COg absorption coefficient of 2.382 x 10-3 km=1,

3. Includes COg absorption coefficient of 3.109 x 10-5 km-1,
91
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Attention is also called to the fact that the entries in the "% lines"
crlumn does not add up to 100%. The difference between 100% and the total
in this column is the percent contribution of lines within the twenty cm'l
cutoff distance that contribute, but which individually are too weak to be irn -

cluded in the curves. The larger this number, and the more it arises from
absorption lines centered near the 20 cm'l limit, he greater is the chance

that near wing non-Lorentz shape effects may occur. We have not investigated
the extent to which this may be the case.
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5. CH 4 AESORPTION COEFFICIENTS FOR LABORATORY CONDITIONS

For very dry conditions, and for applications at high altitudes greater
than 5 km, CH 4 is expected to be a major contributor to molecular absorp-
tion of DF laser radiation. For relatively humid sea level applications,
current AFCRL line parameter values indicate that CH 4 should contribute
very little to the line absorption at DF frequencies. However, current
methane line parameters (splittings, strengths and widths) are suspect since
the data on which they are based is old, and because low order approximations
to the strength and splitting theory ware used. The dominant CH 4 band in the
more transparent DF region is the Vo +V, combination. The strengths of the
2v 4 band which contributes in the low frequency region has recently been up-
dated by Fox [17]. The new values have not been used in the present calcula-
tions since the 2v 4 contribution is very small. Also, an average value of
0.055 cm'1 was used for the Lorentz half width in this region. Therefore, it is
not unireasonable to expect that CH 4 absorption coefficients may well be factors
of 2-10 in error. Recent airborn2 measurements of stratospheric CH 4 indi-
cate that the strengths of these lines may be greatly underestimated [18]. Con-
sequently, current predicted values of only several percent contribution of |

methane may in reality be considerably larger.

To assist laboratory measurements of DF laser absorption by CH4, cal-
culation of methane absorption coefficients for optimum laboratory conditions
have been performed. For optimum measurements, CH 4-air mixtures must
be enriched with CH 4 well above the levels which occur naturally. This can
be done with confidence since, as discussed in Section 2, the self broadening
enters the line absorption linearly through the Loreniz hzlf width. Thus, for a
1.6 ppm naturally occurring CH4 abundance, N2 or O2 broadening is orders
of magnitude more dominant than CH 4 seif broadening. Recent CH4 self
broadening investigations indicate that self and air broadening of CH 4 are
comparable. Consequently, even an enrichment to 10 parts air tc 1 part CH4
will only result in an expected contribution to k(y) of order 10%.
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Twenty-one DF lines have been selected for investigation. The selec-
tion is based on importance of the DF line, and the significant occurrence
of CH4 absorption for each. A path of 1 km is assumed, and air/CH4
ratios have been chosen arbitrarily to predict absorption in the range 10%
to 50%. Laboratory temperature was assumed to be heated to 303°K, since
a slightly elevated tem)erature may be maintained accurately. Four sets of
mixtures were chosen for absorption predictions in the desired range. The
volume mixing ratios for the four sets of conditions are given in Table 29,
The results are shown in Figures 29 through 49. Lines are identified as in
the previous section. Because of the large enrichment of CH4, a numbser
of lines occur which did not contribute earlier.
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Table 29. Values Used in Methane Calculations

P

1 atm (only N2 and CH4)

T = 303°K

N2 to Cl-l4 Ratio

_(Volume Basis) Figures
5000 29-32
860 33-40
95 41-44
25 | 45-49
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Figure 29. Methane Absorption of {ne P2(7) DF Line.
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Fizure 31. Methzue Absorption of the Pl(6) DF Line.
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6. SPECIAL PROBLEMS IN THE MEASUREMENT OF
HDO ABSORPTION COEFFICIENTS

HDO absorption at DF laser wavelengths is an example of absorption
by relatively strong inclecular transitions weakened by small natural abun-
dance. One can therefore expect to be able to measure the important HDO
absorptions in the laboratory, using enriched concentrations. The procedures
for doing this are not straightforward, however, since the hydrogen and deu-
terium atoms convert very rapidly when both isotopes are present. Conse-
quently, both nzo and DzO absorption always exist as a background to HDO.
At most DF wavelengths, nzo absorption is weak compared to that of HDO,
whereas Dzo absorption is comparable or even greater than that of HDO,
The nzo : HDO : Dzo mixtures must therefore be chosen carefully for each
wavelength to maximize the HDO absorption relative to the true background.
This will usually require forming enriched HDO concentratior.s from mixtures

of nzo plus Dzo which will favor uzo over Dzo.

The equation of equilibrium between the three modifications of water may
be written as follows,

K
H,0 + D,0 == 2HDO

or, as an equality between particular concentrations,
2
[1-120][02011(e = [HDO)
where the equilibrium constant K, has been given [19] as follows

K, = 3.543 T = 293°K, liquid phase
K, = 3.508 T = 293°K, gas phase

The quantity of prime interest is the ratio of HDO wmolecules to n,o
molecules for given initial Hzo and Dzo conditions. This relation is shown
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in Figure 50. To form a mixture having a hundred to one ratio of HDO to
Dzo in equilibrium, for example, an initial mixture of . 57 parts nzo to

1 part DzO would be required. In so driving the equilibrium in a given direc-
tion, however, the background caused by the favored modification is increased.
The situation is complicated further by the relative loss of HDO for a given
humidity, as either nzo or Dzo is preferred. The weakening of HDO ab-
sorption as Hzo partial pressure is increased is illustrated for several DF
lines in Figure 51. A nominal path of 480 meters and 50% relative humidity
was chosen, as typical of normal operating conditions. It is clear that the
HDO absorption weakens significantly as the ratio of HDO to D20 increases.
The background contributions are further open to question since the absorption

coefficients of Dzo and HzO are not well known in this spectral region.

The effect of background DZO absorption is given in Table 30, using tha
short petis D,O background measurements of Spencer [20]. It can be seen in the
table that even at HDO/Dzo ratios of 100, significant DzO from background
persists for severul lines. P3(7) is always dominated by D20 absorption, for
example, but this is because the HDO contribution itself is not large at this
wavelength,

The nzo lines in this region are naturally weak, and no measurements
exist. Consequently, both the Hzo and D20 background to HDO measure-
ments in this region must be considered inadequately known, at best.
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Table 30,

Ratio of Absorption Coefficients of Dzo and HDO for Various DF

Laser Lines at Several Concentration Ratios of HDO to Dzo"‘

Laser Line szO/EHDO
LD Freg. {}%:1 =20 |=50 | =100
) (cm °) 2

P,y(8) | 2631.09 2.00 |.100 | .040 | .020
Pg(6) | 2594.23 1.96 |.098 | .039 | .0196
Py(7) | 2570.51 - - - .
P,(5) | 2532.50
P,(12) | 2611.10 .667 |.033 | .013 | .007
Py(4) | 2750.05 0 0 0 0
P,(4) | 2727.38 1.26 |.062 | .025 | .013
P,(5) | 2703.98 5.06 |.258 | .101 | .o051
P,(6) | 2680.28 1.99 |.100 | .040 | .020
Py(7) | 2655.07 2.20 |.110 | .o044 | .022
P,(9) | 2605.87 12.3 |.614 | .246 | .123
P,(10) | 2580.16 38.3 |1.92 | .766 | .383
P,(11) | 2553.97 2.00 |.100 | .o40 | .020
Py(8) | 2545.37 0 0 0 0
Py(®) | 2521.81 .524 |.026 | .010 | .005
P4(10) 2496. 61 0 0 0 0
Pg(11) | 247134 2.20 |.114 | .046 | .023

*Calculations Based on Data Reported by Spencer, Ref. 20.
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7. COMMENTS AND RECOMMENDATIONS
FOR FUTURE MEASUREMENTS

The absorption coefficients presented in this report incorporate the current
"best value" of line and continuum parameters. Therefore, these results are
considered to be the most realistic attainable at present. However, the ac-
cepted input parameters are open to considerable suspicion for a number of
reasons. The most basic of these is that the absorption coefficients them-
selves are very small. Such small absorption coefficients are very difficult
to measure under controlled conditions, and the physical mechanisms which
give rise to the absorption invoke higher order or previously uninteresting
phenomena (pressure induced N2 absorption, combination bands, isotopic ab-
sorption, etc.). A complete understanding of molecular absorption at DF
wavelengths requires accurate theoretical modeling and an accurate data hase.

The motivation for the present investigation has been to provide predictive
calculations which would guide quick-response laboratory measurements of
absorption coefficients at DF wavelengths, and which would guide interpretation
of the data. The results presented here lead to the conclusion that measure-
ments planning must consider two aspects of the DF molecular absorption
problem. These are the selection of priorities for the choice of niolecule and
individual lines to investigate and the selection of the method of performing
the measurements.

From the standpoint of the DF propagation problem, the major contribu-
tions, in order of decreasing contribution to absorption, are as follows:

nzo Continuum

N, Continuum (2400 em™" - 2550 cm™")
HDO Lines

N20 Lines

CH, Lines

4
Hzo Lines
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For very dry conditions, or at altitude, priorities will shift to a better
understanding of the line absorption of the uniformly mixed gases. The species
Nzo, CH 4 and H20 are grouped together since each can be quite important at
several specific wavelengths. Hzo occurs only at several DF wavelengths,
but of these, Hzo often is the dominant absorber. There is more DF absorp-
tion by N20 than by either CH 4 °F Hzo, but the latter occur at more trans-
parent wavelengths, and therefore are wavelengths of greatest interest and
potential value.

(1) N2 Continuum.,

In the wavenumber region between 2400 em™]

and 2550 cm-l, N, con-
tinuum absorption is large. At larger wavenumbers, current predictions in-
dicate that it will be small, but since this region is the one which is apparently
best for DF propagation, this should be confirmed.

Accepted values for the N2 continuum are probably accurate below 2500 cm'l,

but measurements on which they are based were made at unrealistic conditions.
Pressures up to 20 atmospheres with short path lengths (~ 30 meters) were
used to obtain sufficient absorption strength for accurate measurements. K
the exirapolations to low pressures are not correct, or if spectral structure

is unexpectedly present, important surprises can result for laser propaga-
tion. In any event, more accurate values should be obtained above

2550 cm-l.

In addition to its importance to DF atmospheric propagation, N2 continuum
values should be known precisely since all measurements of H20 foreign broad-
ened continuum and N20-, HDO-, and CH 4-air mixtures will have an under-
lying N2 continuum which must be accounted for in laboratory measurements

or atmospheric simulations,

If long paths (1-2 km) are available, White cell measurements at several
DF wavelengths should be performed at low pressures (1 atm - 2 atm). Above
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2550 cm°1 however, more sensitive techniques should be used. Spectrophone
measurements should be preferred over operating at increased pressures for
the weakest values of k(). The use of several absorption techniques is always

desirable for difficult measurements as a means of removing possible measure-
ments error and artifact.

(2) H,O Continuum.

The self and air broadened Hzo continua are the most important contribu- :
tors to absorption throughout the DF region. Rapidly varying spectral structure
is not expected, since distant line wings are the source of the absorption. (At
10.6 ym this is not necessarily true -- there is some evidence that dimer or
polymer water may be responsible for the anomalously large self broadened
HZO continuum. Even so, some theories of the dimer formation indicate that

structure may not be present [21].)

f
here. However, one should remember that these values were not mea-

sured at this temperature. Because of the experimental difficulty in ob-
taining a sufficient number density of HZO’ values of C: between

2400 cm™} and 2650 em™! were extrapolated from measurements at
338°K, 384°K, and 428°K. Between 2650 and 2800 cm™!, values were
extrapolated from measurements at 384°K only. The ratio C:/C? was
determined from mixtures of H20 and N2 at 428°k only. The value
0.12 was determined in this manner, nnd is suggested as the best value

As discussed in Section 3, the Burch values of C° and C: are adopted

for 296°K as well, The total operating pressures ranged between 4.5 atm

and 10 atm, with a 2 atm partial pressure of Hzo. Since sample conditions
so drastically different than required for HEL applications were required to
obtain the data, and since the quoted error flags are rather large, confirmation
of the values by additional measurements is highly desirable.
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The H,0 (broadened by N, and O,) continuum is most important and
difficult to measure since it is not possible to get the required number den-
sities of HZO at the desired temperature and pressures while maintaining a
dilution of 1 part Hzo to ~ 100 parts N2 and 02. The spectrophone appears
to offer the best possibility of performing accurate measurements of such
weak absorption, and thus the development of a spectrophone suited to this
measurement should be pursued. Note that the accepted Hzo continuum
parameters assume that 02 broadening is the same as that of NZ‘

Self broadened HZO continuum measurements are algsn lege difficult
at ambient temperatures since number densities are small. If paths up
to 2 km are available with White cells, this continuum contribution can
be determined by careful measurement. The absorption is so weak, how-
ever, other techniques such as the spectrophone should be used for purposes
of comparison, or in place of White cell measurements if paths of several
kilometers and good signal-to-noise is not available,

(3) CH, Line Absorption Coefficients.
4

CH4 absorption coefficients occur in the DF region as individual lines
and as multiplets consisting of several lines within ~ 0.1 cm™! spread. In-
variably, these lines have not been observed directly, and the splittings have
been predicted using low order approximations. Also, the individual strengths
of splittings in tetrahedrally symmetric molecules are difficult to calculate
accurately. Because of this uncertainty, aad because of the rapid variation
with wavelength, CH 4 absorption coefficients are the most suspect of the line

contributors.

Because the self and foreign broadened CH4 line widths are comparable,
greatly enriched concentrations of methane can be used. Therefore, White
cell measurements on samples with CH 4/air ratios ~ 0.1 to 0.01 are reason-
able, and can be performed in a straightforward manner.
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(4) ::DO Line Absorption Coefficients,

HDO is the single most important line absorption coefficient in the DF
laser region. Current strength and width values are in considerable doubt
since they have not been measured directly, and their predictions have been
based on nzo strength and width calculations or measurements. HDO there-
fore ranks high as a molecule to be investigated experimentally.

As discussed in Section 6, special problems arise in attemgpting HDO
measurements since HDO may be prepared siraightforwardly only in the
presence of 22-3 and iizo. Consequently, better knowledge of HDO line
broadening by Hzo and D20, ard of D20 strengths should be obtained be-
fore careful measurements of HDO absorption coefficients can be performed.

(5) N,O Line Absorption Coefficients.

Nzo is a strong absorber in the 3.8 - 4.0 ym region, and it is relatively
transpare-t to DF atmospheric propagation only because its natural abun-
dance is ::.:5s than one part per million. Also, the N20 line structure is
regular!+ spaced, with line separations of .., 1 cm"l. Consequently, experi-
menta. ‘a exist for lines in the dominant bands. Current Nzo parameters
therefor .re expected to be rather accurate compared to CH 4 and HDO, and

measurement of N20 absorption at DF wavelength is straightforward using
conventiona techniques.
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LIST OF SYMBOLS

ratio of self to foreign broadened half width: y ./7‘
Einstein coefficient for induced absorption

coefficient for temperature variation of C:
empirical foreign continuum absorption coefficient

empirical self continuum absorption coefficient

initial energy level

factor quantifying azj
m.trix element

shapes or form factor of an absorption line

dependence of the electric dipole

altitude

rotational quantum number
rotational quantum number
equilibrium constant

absorption coefficient
continuum absorption coefficient

far wing absorption coefficient
near wing absorption coefficient
peak value of absorption coefficient

path length
superscript denoting lower levels

exponent for temperature variation of Cg
number density of absorbing molecule

total pressure
partial pressure of foreign molecule
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LIST OF SYMBOLS

partial pressure of absorbing molecule

partial function

cy Y
value of o when it is numerically equal to 70
C f

f

absorption line strength

absorption line strength per molecule per cm3

temperature

superscript denoting upper levels
vibrational quantum number

line shape parameters

quantum numbers other than v,J

normalization constant for non-Lorentz lines
half width at half height of absorption coefficient
Doppler line half width

frequency difference between laser and line center

non-Lorentz exponent

electric dipole moment function

frequency
frequency beyond which a line is non-Lorentz

center frequency of absorption line

transmittance

electric dipole matrix element connecting states i and f
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